Sensor placement optimal for the precision of modal parameter estimation with subspace methods

Author:

Greś Szymon,Döhler Michael,Dertimanis Vasilis,Chatzi Eleni

Abstract

Abstract In this paper we focus on sensor placement for output-only modal analysis, where the objective is to choose those sensor locations yielding a minimal variance in the identification of modal parameters from measurement data. It is heuristically shown that the variance of modal parameters estimated with data-driven subspace identification can be approximated solely based on the process and the measurement noise properties with the Kalman filter and the underlying system model, and is independent of data which are not available at the experimental design stage. The performance of the proposed approach is illustrated on an extensive Monte Carlo simulation for an illustrative example of a mechanical chain system.

Publisher

IOP Publishing

Reference19 articles.

1. Sensor placement for on-orbit modal identification and correlation of large space structures;Kammer;Journal of Guidance, Control, and Dynamics,1991

2. Sensor placement with optimal damage detectability for statistical damage detection;Mendler;Mechanical Systems and Signal Processing,2022

3. Sensor placement for optimal kalman filtering: Fundamental limits, submodularity, and algorithms;Tzoumas

4. Noise, ill-conditioning and sensor placement analysis for force estimation through virtual sensing;Tamarozzi,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3