Selection and integration of adjustable load in multiple scenarios

Author:

Zhou Zhaozheng,Ye Wei,Leng Zhenglong

Abstract

Abstract In the context of the “carbon peaking and carbon neutrality goals”, the new electricity systems are evolving towards source-load friendly interactions. At the same time, the increasing necessity for adjustable loads to participate in the power balance of the new electricity systems is highlighted. Consequently, a large-scale source-grid-load design scheme is proposed. It employs three independent communication channels to facilitate communication between users and intelligent grid-load terminals. Based on analysis of the individual loads and equipment characteristics of each user, principles for user shunt load access principle and adjustable loads are formulated by combining the maximum duration, frequency constraints, and compliance costs. Furthermore, it proposes construction plans for both the customer side in a single distribution room and the customer side distributed across different locations. According to the experimental analysis of 245 users, the response time of the experimental system is less than 600 ms. These advancements enhance the emergency response speed and responsiveness, contributing to the advancement of precise, real-time, and lean management of the demand side of the power grid.

Publisher

IOP Publishing

Reference15 articles.

1. Power grid practice of suppressing transient overvoltage of sending-end system by ultrahigh voltage direct current control parameters [J];Yan;Journal of Physics: Conference Series,2022

2. A Dynamic Reactive Power Allocation Method for Sending-End Power System of the UHVDC Delivering Large Terminal of Renewable Energy [J];Li,2023

3. Research on continuous current characteristics and operating load characteristics of EGLA in UHVDC lines[J];Wang;Journal of Physics: Conference Series,2022

4. An integrated source-grid-load planning model at the macro level: Case study for China’s power sector [J];Ning,2017

5. Emergency control of user low-voltage load based on grid-load terminal[J];Lu;Electric Power Engineering Technology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3