Detection and identification of bad data in AC/DC hybrid systems with LCC and MMC

Author:

Zhao Huashi,Huang Yaohui,Song Zhiqiang,Xu Jianzhong,Zheng Kexin,Liang Kangkang

Abstract

Abstract Based on the CIM/XML and CIM/E documents exported from the regional dispatching system, this paper focuses on data generation and starts by converting the exported documents into raw input data for state estimation. Considering the interactions between the AC system, LCC, MMC, and LCC-MMC interfaces, a unified iterative method is proposed to model the state estimation of the 500 kV subnetwork. Subsequently, Gaussian noise is added to the original measurement data, and the maximum residual test method is employed for detecting and identifying bad data. Finally, the effectiveness of the proposed models for AC/DC state estimation and the detection and identification of bad data are validated through simulation data.

Publisher

IOP Publishing

Reference11 articles.

1. Simulation Analysis of LCC-MMC Hybrid DC Transmission System;Wen;Electrical Technology,2021

2. State Estimation for Hybrid VSC Based HVDC/AC: Unified Bad Data Detection Integrated With Gaussian Mixture Model;Ayiad;IEEE Access,2021

3. A Highly Efficient Bad Data Identification Approach for Very Large Scale Power Systems;Lin;IEEE Transactions on Power Systems,2018

4. False Data Injection Attack Method for AC/DC Hybrid Systems;Xie;Power Engineering Technology,2022

5. False Data Attack Detection Method Based on Extended Kalman Filter;He;China Electric Power,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3