State inference for low-observable distribution system based on graph convolutional network

Author:

Xuan Yi,Sun Zhiqing,Li Qizhou,Liu Jian,Liang Yundan,Huang Jianping,Dai Tiechao,Liu Weihao,Huang Yi,Fan Libo,Liu Xingye,Zhang Jiansong,Chen Yifang,Jiang Jian

Abstract

Abstract Distribution network state inference refers to the process of calculating the state variables of each node by using measurement data and network models in the operation of the distribution system. However, the uneven measurement layout and insufficient measurement accuracy in the distribution network have brought great challenges to the state inference of the distribution network. This paper proposes a low-observable distribution network state inference method based on a graph convolution network (GCN), which uses sparse measurement data to infer missing measurement information. Firstly, the observability of the distribution network is analyzed by the numerical probability analysis method. Secondly, the GCN is employed to extract feature information from measurement data and integrate these features. The state inference model of the distribution network based on the GCN is established. Subsequently, power flow constraints of the distribution network are incorporated into the GCN training process to enhance the precision of the generated data. Ultimately, the efficacy of the proposed method is validated using the IEEE 33-node distribution system.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3