Image segmentation and feature extraction method for lung lesion detection in computed tomography images

Author:

Abdullah M F,Sulaiman S N,Osman M K,Setumin S,Karim N K A.,Sahimi F A,Ani A I C

Abstract

Abstract Lung cancer is a form of cancer that causes uncontrollable cell growth in the lungs. Patients with lung cancer frequently miss a treatment, face higher health care costs, and get the worst outcomes. The detection of the existence of lung cancer can be performed in a variety of ways, such as computed tomography (CT), magnetic resonance imaging (MRI), and radiography. Many researchers have developed ways of automating lung cancer diagnosis using image processing techniques because of the noise and low image quality between the cancer cells, the lung, and the background. This study develops an image processing technique that uses image segmentation algorithms to segment lung nodules in computed tomography images using feature extraction. In the initial phase, it is essential to establish a rigorous image processing framework with the following sequential steps: (i) object edge identification and (ii) lesion boundary recognition. The architecture includes image processing techniques, thresholding, and morphological detections (erosion and dilation). Lesions can have various sizes and shapes, both regular and irregular. The new method has been applied to find the lesions using their roundness size. In addition to learning purely from CT scans, the previously studied lesion characteristics are also integrated. Data was collected from the Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang. The manual segmentation was used image segmented in the MATLAB software function to remove the background of the images. The perimeter evaluates such as accuracy, recall, and F-score. Based on the analysis the performance of lung lesion segmentation of accuracy is 99.95, recall at 45.76%, and the F-score is 60.67%. For lung lesion detection, the results shows it consist of 3-5 slices with the value of roundness. Besides, lesion detection also have continuity for the roundness value. The experiment results found clear support for the next step of this research for classifications of lesions.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3