A new approach to the development of zero-emission power generation system

Author:

Ryzhkov A F,Bogatova T F,Maslennikov G E,Osipov P V

Abstract

Abstract The problems of tightening harmful emissions standards and meeting commitments to reduce greenhouse gas emissions require the development of environmentally and economically viable technologies to capture CO2 and its subsequent utilization. The integration characteristics of the generic technologies for CO2 emission utilization from energy industries with a short, medium- and long-term commercialization prospects are considered, depending on the level of technological maturity and market attractiveness. Potential CO2 consumers were classified according to the central most sensitive energy generation parameters: volumes, pressure, and purity, depending on the CO2 capture processes parameters and types of thermal power plants. The CO2 utilization unit principles designed for full CO2 capture by various industries under the Paris agreements are considered. The joint analysis of the operating and prospective power plants, leading industrial technologies based on CO2 consumption, has revealed three types of energy-industrial symbioses representing a cost-effective “Power Plant – CO2 Consumer” model. This model operates without CO2 capture and conditioning unit and has the efficiency close to the traditional power plant without emissions utilization. Critical technology solutions are being developed for one of these types.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3