Modelling of wind turbine wakes over forests along the diurnal cycle

Author:

Olivares-Espinosa Hugo,Arnqvist Johan

Abstract

Abstract This work presents a methodology for the Large-Eddy Simulation (LES) of the continuous transition of atmospheric stability over forests along the diurnal cycle and its effect on the turbulence characteristics of wind turbine wakes. The forest is modelled as a porous surface where temperature changes, transferred to the air via sensible transport, are caused by the variation of net radiation and in proportion to the tree height and leaf density. The flow is driven by a pressure gradient including Coriolis forcing to allow for the development of nocturnal inertial oscillations. An actuator disk is employed to model the wake of a wind turbine located in Ryningsnäs, Sweden, for which metmast measurements are available to carry out a comparison. Results show a good prediction of the inflow and wake characteristics during daytime whereas turbulence fluctuations seem to be overestimated during night periods, attributed to a combination of an excess in geostrophic velocity and coarse mesh resolution. Observations of velocity, heat flux, potential temperature, velocity spectra and other higher order statistics are used to characterize the diurnal variations both in the inflow and across the wake. The results show that the model is capable of representing the turbulence flow dynamics during the diurnal stability transition, hence laying the ground to future studies to assess the performance of wind parks over forested areas.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3