Wind Power Prediction using Multi-Task Gaussian Process Regression with Lagged Inputs

Author:

Ávila Francisco Jara,Verstraeten Timothy,Vratsinis Konstantinos,Nowé Ann,Helsen Jan

Abstract

Abstract Wind is a renewable energy source that has become more important in recent years. Wind turbines are equipped with a SCADA system, which allows for remote supervision of the wind farm. SCADA systems are customarily used to provide data averaged every 10 minutes. Nevertheless, recent literature suggests that more insights could be extracted with a higher granularity of data. In this work, a naive methodology based on Multi-Task Gaussian Process Regression is presented, in order to show how spatiotemporal modeling benefits power estimation. Using sparsity properties a model for possible power prediction is proposed. The model proposed performs better than the power curves provided by the manufacturer.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference30 articles.

1. A systematic literature review of machine learning methods applied to predictive maintenance;Carvalho;Computers Industrial Engineering,2019

2. On the use of high-frequency SCADA data for improved wind turbine performance monitoring;Gonzalez;Journal of Physics : Conference Series,2017

3. Wind power forecasting using advanced neural networks models;Kariniotakis;IEEE transactions on Energy conversion,1996

4. Physics-informed machine learning;Karniadakis;Nature Reviews Physics,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3