The effect of the tower’s modeling on the aero-elastic response of the NREL 5 MW wind turbine

Author:

Bernardi Claudio,Della Posta Giacomo,De Palma Pietro,Leonardi Stefano,Bernardoni Federico,Bernardini Matteo,Cherubini Stefania

Abstract

Abstract In this work, we aim at evaluating the aeroelastic response of the blades of a standalone NREL 5MW wind turbine by means of a high-fidelity fluid-structure interaction solver based on large-eddy simulation, and compare the results with those of engineering-fidelity methods based on the Blade Element Momentum (BEM) theory. For the latter, we use the software OpenFAST [1], which couples an aerodynamic solver based on the BEM theory with a solver of the blades’ structural dynamics. Concerning the computational fluid dynamics (CFD) solver, the tower and nacelle are modeled by means of an immersed boundary method, whereas the aeroelastic rotor is modeled by an actuator line model coupled with a Computational Structural Dynamics (CSD) solver representing the blades as rotating cantilever beams. A comparison of the CFD-CSD results with the corresponding ones obtained by OpenFAST shows that the predicted displacements at the blade tip remarkably differ between the two approaches in correspondence of the passages of the blades in front of the tower. Indeed, the interaction between the blades and the tower introduces a significant perturbation in the local aerodynamics that leads to a drop of the displacement at the tip of the blade and of the root reaction magnitude, which appear to be not accurately described by OpenFAST.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference33 articles.

1. National Renewable Energy Laboratory,2023

2. Long-term research challenges in wind energy – a research agenda by the european academy of wind energy;van Kuik;Wind Energy Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3