3D Reconstruction of embedded object using ground penetrating radar

Author:

Fadil Nur Dina,Ali Hasimah,Zaidi Ahmad Firdaus Ahmad,Kamal Wan Hamirul Bahri Wan,Basri Nurin Amni Mohd

Abstract

Abstract Ground Penetrating Radar (GPR) is a non-destructive device widely used to locate and map underground utilities such as pipes, cables, etc. Its principle is based on the reflection signal of a transmitter-receiver antenna that strikes underground objects by means of the propagation of a short pulse of electromagnetic waves into the ground. The GPR will produce a hyperbolic curve as a result of the object’s presence. Accurate interpretation of hyperbola curves is greatly important and highly depends on user expertise; thus, it is considered a challenge. To address this issue, this study aims to develop 3D reconstructions of embedded objects. In this study, C-scan images were acquired, and 3D interpolation and the Synthetic Aperture Focusing Technique (SAFT) were introduced. In this framework, the acquired data is subjected to pre-processing techniques via time-zero correction, background removal using average background subtraction, and Kirchoff’s migration method. The software Reflex 3D Scan has been used to analyse and preprocess the 3D reconstruction of embedded objects. The obtained results show that 3D interpolation and SAFT methods are not only able to reconstruct 3D models but are also able to reveal information on the dimension and location of the buried object represented by voxel points in the 3D space cube.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference7 articles.

1. NDT methods in inspecting road and highway structures;Amran;IOP Conf Ser Mater Sci Eng,2021

2. 3D ground penetrating radar to detect tree roots and estimate root biomass in the field;Zhu;Remote Sens (Basel),2014

3. Ground Penetrating Radar Slice Reconstruction for Embedded Object in Media with Target Follow;Kadhim;WSEAS Transactions on Computers,2010

4. An overview of ground-penetrating radar signal processing techniques for road inspections;Benedetto;Signal Processing,2017

5. Indirect preservation of Egyptian historical sites using 3D GPR survey;Gaber;Egyptian Journal of Remote Sensing and Space Science,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3