Design and Development of Cascaded Current Control in DC Motor Variable Speed Drive using dSPACE

Author:

Ahmad Firdaus A Z,Davendren T,Azmi S A,Hwai Leong Jenn,Kamarudin Kamarulzaman,Hassan Azlini,Ali Hasimah,Azalan Mohd Shuhanaz Zanar,Mamat Normahira

Abstract

Abstract Even today, DC motors are still used in variety of applications, including home appliances, transportation, as well as industrial crane and rolling machine. However, achieving precise speed and torque control in DC drives at industry level could be challenging, as instability and reduced efficiency remains at large. This project focuses on developing a cascaded control system for a Separately Excited Brushed DC motor using dSPACE platform. The cascaded control system, designed using MATLAB Simulink, incorporates a proportional-integral (PI) controller at the speed loop and a Hysteresis controller at the current loop to improve robustness and dynamic performance. The experimental setup utilizes the dSPACE 1104 platform, an asymmetric bridge converter board, gate driver, and electrical load. Speed measurement is done using an incremental encoder, while current is measured using the ACS712 current sensor. The drive system was tested in alternate low and high speed cycle on various load level to test for stability, robustness and dynamic performance. The proposed control system was compared with PI-closed-loop control and open-loop control determine the best drive performance. Experimental results showed significant improvement in term of transient response and ripple reduction of speed and current for proposed cascaded current control over the closed-loop design.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference18 articles.

1. Assessment of control drive technologies for induction motor: Industrial application to electric vehicle;Firdaus;Journal of Physics: Conference Series,2021

2. The design of a DC motor speed controller;Rusu;Fascicle of management and tech eng.,2008

3. Cascade PI Controller Designs for Speed Control of Permanent Magnet Synchronous Motor Drive Using Direct Torque Approach

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3