A New super-resolution restoration method with Generated Adversarial Network for underground video images in coal mines

Author:

Yang Guangyao,Wang Yumo,Yi Chun,Wang Zhongqiang

Abstract

Abstract The computer can be used in Super-resolution reconstruction (SR) to process low-resolution images to obtain high-resolution images. Aiming at solving problems of complex underground video image acquisition environment, uneven brightness, blurred images etc, this paper adopts the idea of deep learning to perform super-resolution restoration of underground video images in coal mines, and proposes a generational confrontation network to super-resolution underground video images in coal mines. The experiment proves that Generated Adversarial Network (GAN), while being compare with Super-resolution Deep Convolutional Neural Network (SRCNN), Efficient Sub-Pixel Convolutional Neural Network (ESPCN), Deeply Recursive Convolutional Network (DRCN) the effect of GAN method is better, because it can better realize the super-resolution restoration of underground video images in coal mines and provide preliminary support for the subsequent and further application research of underground images in coal mines.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. Image super-resolution via sparse representation IEEE Trans;Yang;On Image Processing.,2010

2. Dual channel night vision image restoration method based on deep learning;Niu;Computer Application,2020

3. Coal Mine Degradation Image Restoration Algorithm Based on Dark Primary Color Prior;Liu;Coal Science and Technology.,2012

4. “Zero-shot” super-resolution using deep internal learning;Shocher,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3