Assessment of Multisource Remote Sensing Image Fusion by several dissimilarity Methods

Author:

Li Feiyan

Abstract

Abstract Recently, advancements in remote sensing technology have made it easier to obtain various temporal and spatial resolution satellite data. Remote sensing techniques can be a useful tool to detect vegetation and soil conditions, monitor crop diseases and natural disaster prevention, etc. Although the same scene taken by different sensors belong to the same ground object, the information that they offered are redundant, complementary and collaborative due to the spatial, spectral and temporal resolution are different. The method of image fusion can integrate an image with rich details and valuable information from multi-source remote sensing images, which aim to obtain more comprehensive and precise observations of the ground object. By using aspects from multi-source image fusion, this review presents the current status and future trends in remote sensing image fusion. First, different image properties and their applications are presented for remote sensing datasets at home and abroad. Second, a general summary and inductive analysis of the challenging difficulty of different types of multisource image fusion methods is conducted. Third, experiments are tested on eight different methodological approaches, and experimental results demonstrate that GSA method is the best alternative in terms of obtaining high spatial resolution and retaining the spectral information.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Recent advances in pansharpening and key problems in applications;Xu;International Journal of Image and Data Fusion,2014

2. A Pan-Sharpening Method Based on Evolutionary Optimization and HIS Transformation;Chen,2017

3. A review of remote sensing image fusion methods;Ghassemian;Information Fusion.,2016

4. A critical comparison of pansharpening algorithms[C];Vivone,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3