3D range-modulators for proton therapy: near field simulations with FLUKA and comparison with film measurements

Author:

Charuchinda W,Horst F,Simeonov Y,Schuy C,Penchev P,Poulsen P,Sitarz M,Busold S,Reidel C-A,Folkerts M,Krieger M,Suwonjandee N,Asavapibhop B,Durante M,Zink K,Weber U

Abstract

Abstract The 3D range-modulator is a device used in particle delivery systems that can create a highly conformal and homogeneous dose distribution in the target volume with mono-energetic beams, providing an option for high dose-rate FLASH therapy. In the normal case, the modulators are positioned at a typical distance of 30-50 cm in front of the target in order to avoid the fluence ripples resulting from the periodic structure of the modulators. FLUKA Monte Carlo simulation package was used to investigate the fluence distributions of protons penetrating through the 2D range-modulator, the simplified version of the 3D range-modulator, and to determine the minimum distance at which the fluence is homogeneous enough for the treatment. To implement the complex geometry of the modulator in FLUKA, a dedicated FLUKA user routine was developed for the simulation of the periodic pin structures. The highest fluence ripple occurred at a few centimetres behind the modulators and then faded away as the distance increased, which can be described by the edge-scattering effect and later by the blur-out of the overlapping contributions from the pins. Moreover, the dose distribution in water was investigated, particularly for small distances between the modulators and the water phantom. Furthermore, the Monte Carlo results were compared with radiochromic film measurements irradiated with a 3D-printed range modulator and showed a good qualitative agreement. Prospectively, for low modulator-to-target distances, the strong dose inhomogeneities which appear in the proximal part of the target, could introduce additionally a kind of ‘mini beam’ normal-tissue sparing by the 3D range-modulators.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3