Thermomechanical properties of PEG-based composites with micro-quartz fillers

Author:

Fauziyah Nur Aini,Fajra Dewi Nora,Wulansari Lila Dina,Pratapa Suminar

Abstract

Abstract Micro-quartz-reinforced - polyethylene glycol (PEG) composites were fabricated by a simple liquid method. This study reveals the thermomechanical properties of the PEG/quartz composites around its melting transition temperature. The quartz microparticles were prepared from natural silica sand collected from Tanah Laut Pelaihari, South Kalimantan, by magnetic separation, HCl immersion, and water cleaning. Then, quartz powders were heated in various temperatures, i.e., at 500, 1000, and 1200 °C where we found quartz particle sizes of 168, 217, and 249 nm, respectively. PEG/quartz composites with 10 wt% of these sizes were synthesized and a pure PEG sample was also prepared for comparison. The Fourier-transform infra-red spectroscopy (FTIR) and x-ray diffraction (XRD) data showed that there was no additional peak in composite patterns which verified the successful synthesis of the PEG/micro-quartz composites. Meanwhile, the dynamic mechanical analysis (DMA) data and analysis revealed that the maximum storage moduli (G’) and melting transition temperature (T m ) exhibited by the composite with quartz heated at 500 °C, i.e., 610.78 MPa and 53.4 °C, respectively. This value is almost six times of that of pure PEG. In general, quartz particle size shifted the G’and T m to the higher values.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3