Design of multi-band flexible microstrip antenna based on micro drop jetting

Author:

Zhidong Zhong,Xiayun Shu,Xuefeng Chang,Yiquan Tang,Sai Cheng

Abstract

Abstract Due to the high compatibility of micro-droplet jetting 3D printing technology within the realm of printed electronics, a flexible and miniaturized multi-band microstrip antenna was designed. The purpose of this is to extend the wireless signal response range of wearable devices and to investigate the feasibility of producing wearable devices with high efficiency. The antenna uses polydimethylsiloxane (PDMS) as the dielectric substrate and nanosilver as the conductive material for the radiating patch, demonstrating remarkable flexibility. The antenna’s structure underwent simulation and analysis through frequency sweeping using ANSYS HFSS simulation software. The outcomes illustrate the antenna operating within three frequency bands at 2.5GHz, 3.5GHz, and 5.8GHz, and the return loss is kept below -18dB for each central frequency. Simultaneously, it displays favorable flexibility. The radiation pattern of the antenna indicates that it has good directivity and no extra side lobes are generated. Ultimately, Antennas were fabricated using microdroplet spraying technology, and the final product’s characteristics and morphology were analyzed. The aforementioned findings demonstrate that micro-droplet jetting technology’s remarkable precision and efficiency render it a viable approach for the processing and production of flexible microstrip antennas.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3