Using intrusive approaches as a step towards accounting for stochasticity in wind turbine design

Author:

Branlard E.,Frontin C.,Maack J.,Laird D.

Abstract

Abstract Current wind turbine design methods require tens of thousands of time-domain simulations and use different random seeds to account for the stochasticity of the environmental conditions. The account of stochasticity is nonintrusive because the sampling method calls a deterministic model multiple times without changing its underlying equations. In this work, we investigate and demonstrate using simple proof of concepts how intrusive approaches can be used to directly account for stochasticity in the equations representing a mechanical system. Our long term goal is to apply such methodology to the design of wind turbines without requiring an excessive number of simulations. Intrusive methods manipulate stochastic variables directly to provide the probability density functions (PDFs) of the states and outputs at any time as functions of the PDFs of the inputs. We illustrate how different methods can be used with a reduced-order model of a wind turbine with one degree of freedom and for linear and nonlinear models. We discuss how the methods can be extended and what it will take to apply them to a level of fidelity similar to current state-of-the-art wind turbine design tools.

Publisher

IOP Publishing

Reference18 articles.

1. Optimization under uncertainty of site-specific turbine configurations;Quick;J. of Physics Conference Series,2016

2. Uncertainty propagation for nonlinear dynamic systems using gaussian mixture models;Terejanu;J. of Guidance, Control, and Dynamics,2008

3. Uncertainty propagation using wiener-haar expansions;Maitre;J. of Computational Physics,2004

4. Optimization under uncertainty: state-of-the-art and opportunities;Sahinidis;Computers & Chemical Engineering,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3