Spatial Correlation between Land Surface Properties and Cloud Characteristics in Indonesia

Author:

Tampubolon Togi,Yanti Jeddah,Liu Chian-Yi

Abstract

Abstract The change of surface vegetation also links to the evapotranspiration pattern so that the moisture flux might be affected by the atmospheric stratiform or convective clouds, meant to be important in balancing hydrological cycle and the more analysing is necessary to explain this phenomenon. The aim of this paper to analyze the complex phenomenon that link in spatial correlation of cloud response towards land surface change that ensued from cloud microphysical components. Fourteen years from 2003 to 2016 over Indonesia was applied that issued by Moderate-Resolution Imaging Spectroradiometer (MODIS) level-3 (L3) provides both cloud and land surface products. Cloud microphysical features consist of cloud fraction, cloud top pressure, cloud optical thickness, and cloud effective radius, whereas Normalized Difference Vegetation Index (NDVI) was applied to identify the land surface change. The distribution of spatial correlation and probability distribution function are used as the method to determine each cloud microphysical components response to land surface change. Concerning annual result, desirable connections among correlation between NDVI and cloud parameters is rather widely. Probabilistic approach from statistical analysis in the wet season forms palpably pattern (parabolic pattern) rather than a dry season pattern. Correlation values based on spatial analysis between NDVI anomalies and cloud parameter anomalies have a range of values around -0.8 to 0.8. Throughout Indonesia, every correlation between NDVI anomalies and cloud parameter anomalies has a negative correlation. Sumatra, Kalimantan and Papua have a major role to inject negative correlations. This causes this area to be covered with oil palm plantations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference25 articles.

1. Earth’s Global Energy Budget;Trenberth;Bulletin of the American Meteorological Society,2009

2. Amazon Boundary Layer Aerosol Concentration Sustained by Vertical Transport During Rainfall;Wang;Nature,2016

3. Anthropogenic impact on Earth’s hydrological cycle;Wu;Nature Climate Change,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3