6D Phase space diagnostics based on adaptively tuned physics-informed generative convolutional neural networks

Author:

Scheinker Alexander,Filippetto Daniele,Cropp Frederick

Abstract

Abstract A physics-informed generative convolutional neural network (CNN)-based 6D phase space diagnostic is presented which generates all 15 unique 2D projections (x, y), (x, y′),...,(z, E) of a charged particle beam’s 6D phase space (x, y, z, x′, y′, E). The CNN is trained by supervised learning over a wide range of input beam distributions, accelerator parameters, and the associated 6D beam phase spaces at multiple accelerator locations. The CNN is applied in an un-supervised adaptive manner without knowledge of the input beam distribution or accelerator parameters and is robust to their unknown time variation. Adaptive feedback automatically tunes the low-dimensional latent space of the encoder-decoder CNN to predict the 6D phase space based only on 2D (z, E) longitudinal phase space measurements from a device such as a transverse deflecting RF cavity (TCAV). This method has the potential to provide diagnostics beyond the existing state of the art at many accelerator facilities. Studies are presented for two very different accelerators: the 5-meter-long ultra-fast electron diffraction (UED) HiRES compact accelerator at LBNL and the kilometer long plasma wakefield accelerator FACET-II at SLAC.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3