Lattice design of the UVSOR-IV storage ring

Author:

Salehi E,Taira Y,Fujimoto M,Guo L,Katoh M.

Abstract

Abstract We are designing a storage ring lattice for the future plan of UVSOR. As a candidate, we have designed a storage ring of 1 GeV electron energy, which is higher than the present value, 750 MeV. The magnetic lattice is based on a compact double bend achromat cell, which consists of two bending magnets and four focusing magnets, all of which are of combined function. The circumference is 82.5 m. The emittance is 4 nm in the achromatic condition, which becomes lower in the non-achromatic condition. The lattice has moderately large dynamic aperture with four sextupole families. The lattice of 6-fold symmetry has six straight sections of 4 m long and six of 1.5 m long. Undulators can radiate nearly diffraction-limited light in VUV. If we install high field multipole wigglers at the short straight sections, they can provide high flux tender X-rays. We are expecting usage of a laser-based accelerator as the injector, which might be developed in the next decade. As an alternative plan, we have designed a traditional injector, which consists of a linear accelerator and a booster synchrotron that can be constructed inside of the storage ring.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3