Multi-View consistency-based point cloud registration method with low overlap rate

Author:

Cui Zhiqiang,Liao Zhaoyang,Lin Xubin,Sun Kezheng,Cheng Taobo,Zhou Xuefeng

Abstract

Abstract Accurate and efficient workpiece measurement is crucial for workpiece processing and quality monitoring. Non-contact optical measurement methods have gained more attention due to their simplicity, efficiency, and flexibility compared to complicated and inefficient contact measurement methods. Multi-view registration of measurement data is a key issue in workpiece measurement, as it relies on the system’s geometric accuracy and motion stability, presenting challenges such as the insufficient overlap of multi-viewpoint cloud data and cumulative error. To address these challenges, this paper proposes a multi-view planning and registration algorithm with a low overlap rate. The multi-view planning algorithm employs a greedy method to plan the scanning viewpoints of the workpiece to obtain complete point cloud data efficiently. The multi-view registration algorithm extracts features using a multi-scale geometric feature extraction network, matches the features based on the Hungarian algorithm, builds a graph, and optimizes workpiece positions based on the G2O algorithm for multi-view registration, effectively reducing cumulative error. Measurement experiments on blade workpieces confirm the feasibility of the proposed algorithms.

Publisher

IOP Publishing

Reference21 articles.

1. 3d local features for direct pairwise registration;Deng;IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2019

2. Deep Mapping: Unsupervised map estimation from multiple point clouds;Ding,2019

3. Object modeling by registration of multiple range images[J];Chen;Image and vision computing,1992

4. Towards a general multi-view registration technique[J];Bergevin;IEEE Transactions on Pattern Analysis and Machine Intelligence,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3