Temperature error compensation method of fiber optic gyroscope based on deep learning

Author:

Wu Junjie,Wang Lei

Abstract

Abstract This work provides an error compensation strategy based on deep learning to address the temperature error of a fiber optic gyroscope (FOG). The Attention structure was used to improve the Long Short-Term Memory Network (LSTM), and the improved network was utilized to establish the prediction and compensation model of FOG error. From the two perspectives of the learning ability of the neural network and the improvement of FOG performance, this paper selects three indicators: prediction accuracy, mean square error, and FOG bias stability to comprehensively evaluate the performance of the compensation model. Through comparison, the compensation effect is significantly enhanced.

Publisher

IOP Publishing

Reference13 articles.

1. Thermally induced error analysis and suppression of optic fiber delay loop in the different variable rate of temperature[J];Yang;Optik,2019

2. High precision fiber optic gyroscope resolution test method based on low precision turntable[J];Liu;IEEE Sensors Journal,2020

3. A novel attitude measurement while drilling system based on single-axis fiber optic gyroscope[J];Dai;IEEE Trans. Instrum. Meas.,2022

4. Special thermal compensation experiment and algorithm design for inertial navigation system[C];Zhuo,2019

5. Temperature errors of IFOG and its compensation in engineering application[C];Li,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3