Consumer price index prediction using Long Short Term Memory (LSTM) based cloud computing

Author:

Zahara S,Sugianto ,Ilmiddaviq M B

Abstract

Abstract Long Short Term Memory (LSTM) is known as optimized Recurrent Neural Network (RNN) architectures that overcome the lack of RNN’s about maintaining long period of memories information. As part of machine learning networks, LSTM also notable as the right choice for time-series prediction. Inflation rate has been used for decision making for central banks also private sector. In Indonesia, CPI (Consumer Price Index) is one of best practice inflation indicators besides Wholesale Price Index and The Gross Domestic Product (GDP). Since CPI data could be used as a direction for next inflation move, we conducted CPI prediction model using Long Short Term Memory Method. The network model input consists of 34 variables of staple price in Surabaya and the output is CPI value. In the interest of predictive accuracy improvement, we used several optimization algorithm i.e. Stochastic Gradient Descent (sgd), Root Mean Square Propagation (RMSProp), Adaptive Gradient (AdaGrad), Adaptive moment (Adam), Adadelta, Nesterov Adam (Nadam) and Adamax. The result indicate that Nesterov Adam has 4.088 RMSE’s value, less than other algorithm which indicate the most accurate optimization algorithm to predict CPI value.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Deep Learning : Methods and Applications;Deng;Foundations and Trends in Signal Processing,2014

2. Long short-term memory;Hochreiter;Neural Computation,1997

3. Applying Long Short Term Momory Neural Networks for Predicting Stock Closing Price;Gao,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3