Author:
Zahara S,Sugianto ,Ilmiddaviq M B
Abstract
Abstract
Long Short Term Memory (LSTM) is known as optimized Recurrent Neural Network (RNN) architectures that overcome the lack of RNN’s about maintaining long period of memories information. As part of machine learning networks, LSTM also notable as the right choice for time-series prediction. Inflation rate has been used for decision making for central banks also private sector. In Indonesia, CPI (Consumer Price Index) is one of best practice inflation indicators besides Wholesale Price Index and The Gross Domestic Product (GDP). Since CPI data could be used as a direction for next inflation move, we conducted CPI prediction model using Long Short Term Memory Method. The network model input consists of 34 variables of staple price in Surabaya and the output is CPI value. In the interest of predictive accuracy improvement, we used several optimization algorithm i.e. Stochastic Gradient Descent (sgd), Root Mean Square Propagation (RMSProp), Adaptive Gradient (AdaGrad), Adaptive moment (Adam), Adadelta, Nesterov Adam (Nadam) and Adamax. The result indicate that Nesterov Adam has 4.088 RMSE’s value, less than other algorithm which indicate the most accurate optimization algorithm to predict CPI value.
Subject
General Physics and Astronomy
Reference15 articles.
1. Deep Learning : Methods and Applications;Deng;Foundations and Trends in Signal Processing,2014
2. Long short-term memory;Hochreiter;Neural Computation,1997
3. Applying Long Short Term Momory Neural Networks for Predicting Stock Closing Price;Gao,2018
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献