CFD Simulation of the Cavitation Behaviour in Single Jet Process via Outlet Pressure

Author:

Zhang Hao,Chai Xinjie,He Shihao,Qiu Facheng,Cheng Zhiliang

Abstract

Abstract Cavitation effect is the most common phenomenon in the process of jet. In this work, the method of CFD numerical simulation is used to study the cavitation behaviour in the process of single hole jet. In order to obtain the mixing situation and change process of gaseous water and liquid water produced in the nozzle, the Euler multiphase flow model and the realizable k-epsilon model in the turbulence model are used. The simulation results show that the degree and frequency of liquid column breakage of cavitation water jet are far higher than those of ordinary water jet. And the structure of the nozzle also has the most ideal situation. When the nozzle inlet size is 20 mm, the nozzle diameter is 1 mm, and the nozzle length is 5 mm, which is most conducive to the growth and diffusion of cavitation bubbles. The cavitation effect increases with the increase of the inlet jet velocity, but the promotion effect does not increase significantly when the inlet velocity is greater than 2.5 m/s. From the perspective of energy consumption, the optimum velocity at this time is 2.5 m/s. And the pressure environment at the nozzle outlet also affects the cavitation phenomenon, mainly as follows: positive pressure can inhibit the cavitation effect, negative pressure can promote the cavitation effect, but the negative pressure has a limited effect on the degree of cavitation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3