Photovoltaic Power Generation Related Physical Quantity Mining Method Based On Historical Time Series Data Analysis

Author:

Wang Yin,Liao Siyang,Shen Nuoqing

Abstract

Abstract The impact of distributed photovoltaic grid-connected on distribution network security, power quality and system stability cannot be ignored. In order to better cope with the uncertainty and output of new energy output and understand the characteristics of distributed new energy power output, it is necessary to predict photovoltaic power. The historical time series data of photovoltaic power is large in dimension and quantity. If the data output is not carried out, a large amount of redundant data will affect the accuracy of photovoltaic prediction. Therefore, this paper proposes a feature selection method based on MIC most mutual information coefficient, which filters out the most relevant data of photovoltaic power generation from the original feature variables, and then performs the feature dimension reduction method of linear discriminant analysis (LDA) to map the high-dimensional data to a lower dimension space. Finally, using the prediction simulation example, using the long and short time neural network (LSTM) prediction comparison, the feature dimension reduction method of MIC feature selection and LDA effectively improves the accuracy of photovoltaic power generation prediction.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3