Author:
Yudatama R,Kurniawan V Y,Wiyono S B
Abstract
Abstract
The annihilator graph of a semiring S, denoted by AG(S), is the graph whose vertex set is the set of all nonzero zero-divisors of S. In commutative semiring S, two distinct vertices are adjacent if and only if ann(xy) ≠ ann(x) ∪ ann(y), where ann(x) = {s ∈ S|sx = 0}. Similarly in noncommutative semiring S, two distinct vertices are connected by an edge if and only if either l. ann(xy) ≠ l. ann(x) ∪ l. ann(y), l. ann(yx) ≠ l. ann(x) ∪ l. ann(y), r. ann(xy) ≠ r. ann(x) ∪ r. ann(y), or r. ann(yx) ≠ r. ann(x) ∪ r. ann(y) where l. ann(x) = {s ∈ S|sx = 0} and r. ann(x) = {s ∈ S|xs = 0}. In this paper we study the properties of the right annihilator and the left annihilator of semiring of matrices over Boolean semiring Mn
(ℬ) and then use these results to determine the diameter of the graph AG(Mn
(ℬ)).
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The diameter of annihilator graph of non-commutative semirings;THE THIRD INTERNATIONAL CONFERENCE ON MATHEMATICS: Education, Theory and Application;2021