Dynamic multi-objective evolutionary algorithm based on decomposition with hybrid prediction

Author:

Zhao Shenjia,Zhang Hairui,Lyu Rui

Abstract

Abstract The proposed dynamic multi-objective evolutionary algorithm, DMOEA/D-HP, addresses temporal variations in both the Pareto Front (PF) and Pareto Set (PS) for dynamic multi-objective optimization problems (DMOPs). Utilizing a hybrid prediction approach, the algorithm adapts to the dynamic nature of the problem. The population is divided into three segments for prediction: individuals with a distance greater than a threshold in PS for central prediction, those with a distance less than a threshold in PS for differential evolutionary prediction, and the remaining individuals for cross-mutation to maintain diversity. To assess DMOEA/D-HP’s effectiveness, it is compared with three advanced algorithms in DMOP by using the DF test set. Experimental results demonstrate that DMOEA/D-HP outperforms in terms of distribution and convergence when solving DMOPs.

Publisher

IOP Publishing

Reference13 articles.

1. A co-evolutionary algorithm based on problem analysis for dynamic multiobjective optimization [J];Cao,2023

2. Dynamic multi-objective evolutionary algorithm for adaptive change response [J];Zhengping;Journal of Automation,2023

3. Adaptation in Dynamic Environments: a Case Study in Mission Planning [J];Bui;IEEE Transactions on Evolutionary Computation,2012

4. Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization [J];Wang,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3