ARMA time series prediction model for fault detection of launch vehicle

Author:

Yang Tengyue,Wang Haiying,Ma Guorong

Abstract

Abstract Spaceflight is a high-risk activity, especially for launch vehicles, and the losses caused by launch failures are considerable. Real-time fault detection is a prerequisite to ensure that future launch vehicles can detect and isolate faults in a timely manner, and ultimately reduce the hazard of fault. In this article, a time series prediction model of axial overload and three-axis angular rate is established using ARMA (Auto Regressive Moving Average) time series prediction model, and the residuals of the prediction model are analyzed and combined with the fault determination decision strategy to determine whether the system has a fault, and a fault tree can be built to further locate the fault location.

Publisher

IOP Publishing

Reference18 articles.

1. The RD-170, a different approach to launch vehicle propulsion;Borisl;29th Joint Propulsion Conference and Exhibit,1993

2. Health Monitoring of Liquid Propellant Rocket Engines: Failure Detection and Diagnosis;Zhang;Journal of Propulsion Technology,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3