Relativistic Beaming as a Probe of Stellar and Planetary Masses

Author:

Placek Ben

Abstract

Abstract The primary method of extra-solar planet (exoplanet) detection and characterization is through planetary transits. These events occur when a planet is observed to pass in front of it’s host star with respect to the observers line of sight, which causes a small dimming event. Transits alone yield information on the orbital properties such as period, inclination, semi-major axis as well as physical properties such as the planetary radius. With high-precision photometry, a new photometric effect has emerged as a probe of short-period exoplanet masses. This effect is known as relativistic Doppler beaming (or boosting), and has been used to estimate the masses and densities of numerous exoplanets and stars in binary systems. Here, this effect is discussed in detail along with the prospect of utilizing it with next generation space-based telescopes that will be devoted to the detection and characterization of exoplanets. Prospects for the characterization of binary systems will also be examined.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3