Machine learning assisted reconstruction of positron-on-target annihilation events in the PADME experiment

Author:

Dimitrova Kalina,

Abstract

Abstract The PADME Experiment at the Laboratori Nationali di Frascati, INFN is used in the search for a Dark photon, produced with an ordinary photon in electron-positron annihilation events. The energy of the photons, emitted in the annihilation is measured using a segmented electromagnetic calorimeter. Machine learning methods consisting of various convolutional neural networks are used for the reconstruction of close-in-time signals with high resolution. These algorithms were used on two-photon annihilation events e + e γγ to calibrate the photon energy values. In order to calibrate the neural network output from signal amplitude to energy, the machine learning based results were compared to the conventional methods used for reconstructing the signals. The use of machine learning models for reconstructing real data and the process of calibrating the machine learning method output are presented and discussed.

Publisher

IOP Publishing

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3