Improving the tomographic image by enhancing the machine learning algorithm

Author:

Rymarczyk T,Kłosowski G,Kozłowski E,Sikora J,Adamkiewicz P

Abstract

Abstract Hyperparameter optimization in machine learning models may help enhance the efficiency of obtaining high-quality tomographic pictures, the purpose of this paper. In the discipline of electrical impedance tomography, machine learning techniques are utilized to translate voltage measurements into reconstruction pictures. Because of this, the so-called "inverse problem" arises, whereby the optimal answer must be sought. Effective machine learning relies heavily on the appropriate choice of model coefficients (hyperparameters). As a consequence, the strategies used to improve this choice have an indirect effect on the final reconstruction. The K-nearest neighbors strategy may be utilized to improve a machine learning model based on linear regression and classification models, as we show in this paper. Electrical tomography, a technology that analyses flood embankments from the interior to measure their structural integrity, makes use of the methods outlined above. The data gathered shows that the suggested solutions work.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Selection of the method for the earthing resistance measurement;Szczesny;Przeglą Elektrotechniczny,2018

2. Application of neural reconstruction of tomographic images in the problem of reliability of flood protection facilities;Rymarczyk;Eksploat. i Niezawodn.--Maint. Reliab.,2018

3. Classification algorithms to identify changes in resistance;Duraj;Przegląd Elektrotechniczny,2015

4. GPU-Accelerated Reconstruction of T2 Maps in Magnetic Resonance Imaging;Mikulka;Meas. Sci. Rev.,2015

5. Acceleration of image reconstruction process in the electrical capacitance tomography 3D in heterogeneous, multi-GPU system;Majchrowicz;Informatics Control Meas. Econ. Environ. Prot.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3