Photovoltaic output prediction of regional energy Internet based on LSTM algorithm

Author:

Weng Geping,Pei Chuanxun,Ren Jiaorong,Ye Chen,Cui Qinyue,Qing Hua,Liu Yuan,Guan Xinyu

Abstract

Abstract By the huge development of large scale and modular photovoltaic power generation, accurate photovoltaic (PV) output prediction can help PV power station, scheduling department and power system operate safely and economically. In the process of PV output prediction, the data density is large, and the output data is relatively regular. Therefore, this paper considers the use of long-termed and short-termed memory neural network algorithm to optimize the problem of algorithm gradient vanishment in recurrent neural network, and complete the output prediction of PV power in the regional energy Internet on the basis of historical output data. In this paper, LSTM algorithm is used to analyze the historical output data of PV stations in an industrial zone of a certain city. It can be found that LSTM algorithm has good adaptability for short-term PV output prediction, which can meet the needs of application.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3