Detection of radio signals against the background of strong electromagnetic noise in transport

Author:

Myasnikov E,Zaboronkova T,Kogan L

Abstract

Abstract The problem of detecting a useful signal in the presence of a strong background noise is considered. To solve it, a statistical approach is used, based on a change in the level of chaos in the system when an additional random or deterministic process occurs, which is probabilistically independent from a set of stochastic phenomena that form background noise. It is shown that the occurrence of this process changes the level of entropy of the measured signal; this fact is the basis of the applied mathematical algorithm. It is based on the elements of the Fourier transform apparatus for the probability density with an appropriate choice of a nonlinear function of the random process under study. The proposed approach, based on variations in the randomness in the system in the presence of a useful signal, makes it possible to record its presence against the background of noise components even at low signal-to-noise ratios. The effectiveness of the method is confirmed both by theoretical justification and by the calculations presented in this work. The condition for the implementation of the technique described in the article, which does not impose restrictions on the studied physical fields and frequency ranges, is the comparability of the width of the probabilistic distribution of the desired useful signal with several intervals of discreteness of the measuring equipment. One of the results of this work is a high sensitivity to the emergence of independent random components.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference20 articles.

1. Research on position differential method of dual-satellites TDOA and FDOA in passivelocation system.;Xue,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3