Monoatomic Fe and Pt-Co alloys on NC/Ti4O7 for efficient and durable oxygen reduction

Author:

Luo Yangjun,Wang Youyuan,Zhang Huijuan,Wang Yu

Abstract

Abstract The combination of metal monoatomic with alloys on carbon support facilitates the promising activity in oxygen reduction. However, the alloys still suffer from the degradation of catalyst stability due to carbon corrosion. Herein, the NC/Ti4O7 support was loaded with both monoatomic Fe and Pt-Co alloys using a one-step calcination method. The results indicate that chelation of Fe3+ with α-D-glucose, physical segregation of excess α-D-glucose and binding to N species at high temperatures are essential to increase the loading of monatomic Fe in Fe1/PtCo-NC/Ti4O7. Fe1/PtCo-NC/Ti4O7 demonstrates a half-wave potential of 0.941 V and a mass activity of 3.16 A mgPt -1. This mass activity is as high as 6.87 times that of Fe/PtCo-NC/Ti4O7 (without α-D-glucose during the synthesis, 0.46 A mgPt -1). Meanwhile, Fe1/PtCo-NC/Ti4O7 exhibits a peak power density of 210.5 mW cm-2 and a specific capacity of 771.1 mAh gZn -1 in a zinc-air battery. This dual-substrate strategy provides a new perspective on the multilevel construction of catalysts.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3