Error detection sensitivity test using complex errors on three patient-specific VMAT QA systems

Author:

Thongsawad S,Srisatit S,Fuangrod T

Abstract

Abstract The purpose of this study was to investigate error detection sensitivity for three patient-specific volumetric modulated arc therapy (VMAT) quality assurance (QA) systems (Delta4, EPID-based dosimetry, and log file) with three possible scenarios. Ten patient-specific VMAT QA were randomly selected to test their error detection sensitivities. Artificial complex errors were introduced to the original plans then the QA tests were repeated. These errors were simulated into three possible scenarios: uncertainty, miss-calibration, and worst-case scenario. For uncertainty scenario, the random errors (σ) of multi-leaf collimators (MLC) at ± 2.0 mm and gantry angle at ± 2.0 degree were introduced. The systematic errors of +2MU, and the random errors of MLC and gantry angle at ± 2.0 mm and ± 2.0 degree were applied as a miss-calibration scenario. For worst case scenario, errors were integrated between systematic and random variation of MLC and gantry angle at 2±0.5 mm and 2±0.5 degree, respectively. The dosimetric agreements between QA tests on original versus artificial error plans were determined to investigate error detection sensitivity used gamma analysis with 3%, 3 mm criteria. EPID-based dosimetry showed the most sensitive QA tool to detect three possible scenarios. Log file was the second best method, whereas Delta4 was the worst method to detect three possible scenario errors.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3