Author:
Sin C. S.,Chen H. V.,Wong Denis C. K.
Abstract
Abstract
Let G be a finite non-abelian group. For integer k ≥ 2, we let A
1,…,Ak
be non-empty subsets of G. If A
1,…, Ak
are pairwise disjoint and if the subset product A
i
1
… Aik
= {a
i
1
…aik
|aij
∈ Aij
, j = 1,…, k} coincides with G, where the Aij
are all distinct and {A
i
1
,…, Aik
} = {A
1,…, Ak
} then (A
1,…, Ak
) is called a (k, |A
1|,…, |Ak
|)-complete decomposition of G. For integer n ≥ 3, let D2n
be the dihedral group of order n. Let A, B be the subset of D2n
. In this paper, we show some constructions, namely (2, |A|, |B|)-complete decomposition of D2n
where
|
B
|
∈
{
2
,
4
,
…
2
⌊
n
3
⌋
,
n
−
1
,
n
}
and |A| = 2n − |B|.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献