Spatial-Semantic Transformer for Spatial Relation Recognition

Author:

Peng Huilin,Wang Yang,Ge Hao

Abstract

Abstract Spatial relation recognition, which aims to predict a spatial relation predicate, has attracted increasing attention in the computer vision study. During tackling this problem, modeling spatial relation of the subjects and objects is of great importance. We find that only using spatial features leads to poor results in predicting the spatial relation. To overcome these challenges, we propose an effective spatial attention module to enhance spatial features using semantic features. After identifying the importance of spatial attention mechanism, we propose a spatial transformer module with encoder layers to recognize unseen spatial relation based on spatial attention mechanism. Extensive experiments on the benchmark dataset (SpatialSense) show that, by using refined spatial feature, our spatial transformer model and spatial attention model achieve state-of-the-art performance on overall accuracy.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference37 articles.

1. Spatial-aware graph relation network for large-scale object detection;Xu,2019

2. Natural language object retrieval;Hu,2016

3. Pairwise body part attention for recognizing human-object interactions;Fang,2018

4. Affordance transfer learning for human-object interaction detection;Hou,2021

5. Weakly-supervised learning of visual relations;Peyre,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3