Optimization of Aluminum Alloy Rifled Barrel ECM Process Parameters Based on GA-BP Algorithm

Author:

Zheng Yaze,Tang Lin,Liu Shiying,Zhou Jiakai

Abstract

Electrochemical machining process parameters will affect the surface integrity, surface roughness, service life and other properties of the workpiece. In order to realize high-efficiency and high-quality ECM of aluminum alloy rifled barrel, a method of process parameter optimization based on GA-BP neural network is proposed. The model of BP neural network is established by using MATLAB software. Machining clearance and surface roughness are objective functions. The MSE and linear regression value are analyzed. Genetic algorithm is used to optimize the connection weight and output threshold of BP neural network model. The change of fitness function and the error between predicted value and actual machining value are analyzed. The results show that the GA-BP neural network model can better predict the objective function. The optimal parameters of aluminum alloy rifled barrel ECM are: electrolyte temperature of 29.5±0.2 °C, electrolyte inlet pressure of 1.23±0.02 MPa, power supply voltage of 8.4±0.1 V, and working current of 3600±50 A.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference5 articles.

1. Traditional and Non-Traditional Machining of Nickel-Based Superalloys: A Brief Review;Satish;J. Materials Today: Proceedings,2021

2. Process Signatures – a new approach to solve the inverse surface integrity problem in machining processes;Ekkard;J. Procedia CIRP,2014

3. Material Loadings during Electrochemical Machining (ECM) - a First Step for Process Signatures;Fritz;J. Key Engineering Materials,2015

4. Experimental Investigation on Process Signature for EDM Processes;Bergs;J. ScienceDirect Procedia CIRP,2020

5. Turbomachinery Component Manufacture by Application of Electrochemical, Electro-Physical and Photonic Processes;Klocke;J. CIRP Annals-Manufacturing Technology,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3