Reaction kinetics of basaltic elements in cementitious matrices: theoretical considerations

Author:

Kočí V,Keppert M,Černý R.

Abstract

Abstract Basalt fibers, the frequently mentioned alternative to those made of steel, possess very good mechanical properties and temperature resistance. The alkaline environment of cement matrix makes it vulnerable due to partial fiber decomposition by the effects of OH- ions. This paper aims at computational modelling of such reactions in order to approximate the course of degradation or to predict it lately. The isothermal reaction models are discussed to reveal their strong/weak points by means of fundamental reaction mechanisms analysis. The shape factor and diffusion-based deceleration of the reactions are mentioned as the most significant ones in that respect. The model accuracy is quantified based on fitting the modelling outputs to reference experimental data. The effect of discussion was found to be the most significant factor as the model fitting reached the lowest RMSE (0.0047). Further application of a diffusion model is therefore recommended. The geometrical models need to have reaction rate reduction explicitly incorporated in the reaction constant, otherwise inapplicable data is produced (RMSE = 0.0193).

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3