Research on Intelligent Identification of Magnetizing Inrush Current based on Empirical Modal Decomposition

Author:

Duan Pan,He Ya,Zhang Lianfang,Shi Yingqiao,Yu Yuxin,Wan Haibo

Abstract

Abstract The accurate identification of the converter transformer magnetizing inrush current can ensure the safety of the operation of the UHV DC transmission system. In the differential protection of the converter transformer, it is extremely hard to distinguish between the excitation inrush current generated when the transformer is closed and the Fault current due to internal fault, which leads to frequent misoperation of the transformer protection to the extent that the transformer access fails. This paper proposes a current identification model based on empirical modal decomposition (EMD) and probabilistic neural network (PNN) algorithm with particle swarm (PSO) optimization. The EMD algorithm decomposes the current waveform, and the eigenmode functions (IMFs) of the three highest correlation bars are selected. The energy, cliffs, and standard deviation of the IMFs are extracted as the original waveform eigenvectors.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference11 articles.

1. Harmonic loss analysis of converter transformer in LCL-HVDC system.;Ni;J. Energy Reports,2020

2. Histogram-Based method to avoid maloperation of transformer differential protection due to current transformer saturation under external faults.;Zheng;J. IEEE Trans. Power Syst,2018

3. Identification of inrush currents in power transformers based on higher-order statistics.;Zhang;J. Electr Pow Syst Res,2017

4. A frequency curves analysis-based method for transformers differential protection.;Fani;J. Eur T Electr Power,2011

5. Anti-current transformer saturation transformer phase differential protection based on waveform similarity.;Weng;J. Power System Automation,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3