Tumor imaging diagnosis analysis based on improved KNN algorithm

Author:

Wang Cailing,Li LeiChao,He SuQiang,Zhang Jing

Abstract

Abstract As a simple, effective and non-parameter analysis method, knn is widely used in text classification, image recognition, etc. [1]. However, this method requires a lot of calculations in practical applications, and the uneven distribution of training samples will directly lead to a decrease in the accuracy of tumor image classification. To solve this problem, we propose a method based on dynamic weighted KNN to improve the accuracy of classification, which is used to solve the problem of automatic prediction and classification of medical tumor images based on image features and automatic abnormality detection. According to the classification of tumor image characteristics, it can be divided into two categories: benign and malignant. This method can assist doctors in making medical diagnosis and analysis more accurately. The experimental results show that this method has certain advantages compared with the traditional KNN algorithm.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference8 articles.

1. A density-based method for reducing the amount of training data in knn text classification;Lu;Journal of Computer Research and Development,2004

2. Knn classification algorithm based on k-nearest neighbor graph for small sample;Liu,2011

3. Improved KNN Classification Algorithm Based on K-nearest Neighbor Graphfor Remote Sensing Images;Wang;Journal of Geospatial Information,2021

4. The distance-weighted k-nearest-neighbor rule;Dudani;IEEE Trans Systems Man & Cybernetics,1976

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3