Research and Analysis of Recommendation Algorithm Based on Convolutional Neural Network

Author:

Ding Yuhang,Jiang Wenrong

Abstract

Abstract This paper first introduces the situation that the traditional recommendation algorithms cannot meet the needs of users for accurate and efficient recommendation results because of the continuous growth of data and the increasingly diversified data types. Then it introduces the Deep Learning (DL) algorithm which is getting more and more attention, organizes the research progress of recommendation system based on Convolutional Neural Networks (CNN) in recent years, analyzes its advantages compared with traditional recommendation algorithms. The main research directions and application progress are classified, compared and summarized. Finally, the future development trend of recommendation system based on convolutional neural network is summarized and analyzed.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Summary of recommendation algorithms[J];Bo;Journal of Shanxi University (Natural Science Edition),2011

2. Recommender systems: An overview[J];Burke;Ai Magazine,2011

3. Research progress of deep learning algorithms[J];Qichuan;Computer Engineering and Applications,2019

4. Review of Recommendation System Research[J];Wanzhen;Journal of Hebei University of Science and Technology,2020

5. Summary of Research on Content Recommendation Algorithms Based on Deep Learning[J];Hualing;Computer Engineering,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3