The best parametrization for solving the boundary value problem for the system of differential-algebraic equations with delay

Author:

Afanaseva M N,Vasilyev A N,Kuznetsov E B,Tarkhov D A

Abstract

Abstract In this paper, we considered the numerical approach for solving a nonlinear boundary value problem for the system of differential-algebraic equations with delay argument. The shooting method is used to solve the boundary value problem. The Newton method is used to find the parameter of shooting. To overcome the difficulties associated with the choice of the initial approximation we apply E. Lahaye’s parameter continuation method. If the curve of the solution contains limit points, the method diverges. Then to find the parameter we used the method of continuation with respect to the best parameter - the length of the curve of the solution set. The solution is constructed by advancing the sequence of values of the parameter. With a discrete continuation, the initial-value problem is transformed by a finite-difference representation of the derivatives and entering the best argument and the corresponding equation of hypersphere. The resulting system is solved using the Newton method. To find the values of the functions at the delay point Lagrange polynomial with three points is used. An example of the behavior of an elastoviscoplastic rod is considered.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference20 articles.

1. On the parametrization of numerical solutions to boundary value problems for nonlinear differential equations;Krasnikov;Comp. Maths Math. Phys.,2005

2. Numerical method for solving nonlinear boundary value problem for differential equations with retarded argument;Afanasieva;Elektronnyi zhurnal “Trudy MAI”,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of New Semi-empirical Methods of Modeling the Sag of the Thread;Communications in Computer and Information Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3