Design, implementation and performance assessment of a low-cost dual-axis solar tracker

Author:

Varshney Gunjan,Mittal Udit,Kishore MP,Saxena Ujjawal

Abstract

Abstract As the demand for energy increases and the cost of non-renewable resources continues to rise, many nations are working to find alternative sources of electricity before a crisis arises. This effort is focused on transitioning away from conventional energy sources and towards non-conventional ones. Energy from the sun is clean and available in natural quantities, which can reduce our dependence on fossil fuels on a large scale along with providing low-carbon solutions. By tracking the sun’s radiations, the photovoltaic (PV) panels could be directed in such a way that they collect high levels of sunlight. This article presents the design and performance assessment of a low-cost dual-axis solar tracking system based on Arduino. The main objective of this study is to show that the proposed solar-tracking system performs better a non-tracking system. A light sensor and two servo motors are also employed to move the solar panel toward a high-intensity light source. The software domain code was created using the C programming language using the Arduino IDE, which interacts with the Arduino board and its other connected devices. The performance of the prototype was assessed and compared to that of a stationary solar panel of the same rating. In this paper, the authors have highlighted the necessary techniques to build a low-cost solar tracker for extracting maximum photovoltaic energy using real-time data. In terms of power output, the results reveal that the tracking system surpasses the fixed solar panel, indicating increased performance at a reasonable cost. Therefore, the solar tracker has been proven to be very effective in capturing significant solar energy for solar harvesting applications.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference16 articles.

1. Design and Implementation of a Dual-Axis Solar Tracking System STS;Hamad;NTU Journal of Engineering and Technology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3