Homogenization of Mechanical Properties of Unidirectional Fibre Reinforced Composites with Matrix and Interface Defects: A Finite Element Approach

Author:

Siddharth S,Ramesh Ajith

Abstract

Abstract Fiber Reinforced Composites find increasing applications in the areas of Aerospace, Military Armours, Bullet-proof vests, etc. As the composites are composed of two different constituents, there arises a need to determine the effective properties of the homogenous composites. Experimental determination of the effective properties is very expensive considering the amount of experiments that are required to be conducted, the time and cost to be incurred for each experiment, and the permutations and combinations of the optimal fiber volume fraction. The effective properties are essential for modeling of composites with reference to real-time applications. The micro-mechanics approach reduces most of the above mentioned complexities and helps in accurately evaluating the effective properties. In the presented paper, the properties like Young’s Modulus, Poisson Ratio, and Shear modulus of a healthy (defect free) composite is obtained by modeling a Representative Volume Element (RVE) using the commercial Finite Element Analysis (FEA) solver – Abaqus, with application of Periodic Boundary Conditions (PBC). The presented research focuses on Fiber-Reinforced Metal-Matrix composites like AA2024-Al2O3 and the Ceramic-Matrix composites like ZrB2-SiC. In general, defects in composites arise during the manufacturing process. Matrix Crack, Interfacial De-bonding and Fiber Crack are the major defects which degrade the mechanical properties of composites. This paper presents the modeling of Interfacial de-bonding using the Cohesive-Zone Modelling (CZM) technique for every 90° variation in the fiber-matrix interface and the subsequent evaluation of the corresponding homogenous properties. Matrix Crack is modelled as a matrix defect with a ‘V’ notch for varying a/w ratios. For every variation in matrix crack, the corresponding properties are estimated. Numerical evaluation of the individual effects of interfacial de-bonding and fully grown matrix cracks are followed by the modelling of the coupled effects.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference8 articles.

1. Mechanical and dry sliding wear behaviour of Al7075 alloy-reinforced with SiC particles;Kumar;Journal of Composite Materials,2011

2. A unified periodical boundary conditions for representative volume elements of composites and applications;Zihui;International Journal of Solids and Structures,2003

3. Development of an ABAQUS plugin tool for periodic RVE homogenisation;Sadik,2018

4. Finite Element Modelling of Orthogonal Machining of Hard to Machine Materials;Ramesh;International Journal of Machining and Machinability of Materials,2015

5. Thermoelastic properties of fiber composites with imperfect interface;Hashin;Mechanics of Materials,1990

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3