The ASTAROTH Project: enhanced low-energy sensitivity to Dark Matter annual modulation

Author:

Zani A.,Alessandria F.,Andreani A.,Castoldi A.,Coelli S.,Cortis D.,D’Angelo D.,Carlo G. Di,Frontini L.,Gallice N.,Ghisetti M.,Guazzoni C.,Liberali V.,Monti M.,Orlandi D.,Pasini A.,Pedrini D.,Prioli M.,Sorbi M.,Stabile A.,Statera M.

Abstract

Abstract ASTAROTH is a novel R&D project which aims at improving the physics reach of future direct dark matter detection experiments based on NaI(Tl) scintillating crystals. There is a strong need to test the long standing DAMA positive observation of an annual modulation that could be due to Dark Matter (DM), with the same target material and in a model independent way. ASTAROTH aim is the enhancement of the sensitivity to the annual modulation signal, compared with present technology, by lowering the detection energy threshold in order to observe sub-keV recoils for the first time. This can be achieved by reading the scintillation light from the NaI(Tl) crystals with arrays of Silicon PhotoMultipliers (SiPM), and placing the detectors in a cryogenic environment. SiPMs feature lower dark noise than Photomultiplier Tubes (PMTs) at T < 150 K and allow for higher light collection. The cooling medium is liquid Argon, as it is an excellent scintillator that can be instrumented to act as a veto against several backgrounds. Here we present the status of the ASTAROTH project, introducing the innovative design of the detector chamber that will be used for the demonstration of the technology. Then, we will show the preliminary results of our first ever measurements performed on a single NaI(Tl) crystal read out by one SiPM array in a cryogenic set-up cooled with liquid nitrogen.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3