Abstract
Abstract
We investigate the potential of type II supernovae (SNe) to constrain axion-like particles (ALPs) coupled simultaneously to nucleons and electrons. ALPs coupled to nucleons can be efficiently produced in the SN core via nucleon-nucleon bremsstrahlung and, for masses exceeding 1 MeV, they would decay into electron-positron pairs, generating a positron flux. In the case of Galactic SNe, the annihilation of the created positrons with the electrons in the Galaxy would contribute to the 511 keV annihilation line. The SPI (SPectrometer on INTEGRAL) observation of this line allows us to exclude a wide range of the axion-electron coupling, 10−19 < gae
< 10−11, for gap
– 10−9. Additionally, ALPs from extra-galactic SNe decaying into electron-positron pairs would yield a contribution to the cosmic X-ray background. In this case, we constrain the ALP-electron coupling down to gae
∼ 10−20.
Subject
General Physics and Astronomy