Effect of wood structure geometry during firebrand generation in laboratory scale and semi-field experiments

Author:

Kasymov D P,Agafontsev M V,Tarakanova V A,Loboda E L,Martynov P S,Orlov K E,Reyno V V

Abstract

Abstract As the set of experiments result, statistically substantiated data were obtained on the laws of ignition of a model angular structure under conditions of a point source of heat exposure. The use of IR diagnostics made it possible to control the thermal picture in the experimental area, as well as to capture areas of the highest and lowest heating. In the Large Aerosol Chamber of IAO SB RAS, preliminary experiments were carried out on a “firebrand shower” model exposure, which is naturally occurring firebrands (flaming or glowing embers) with some types of construction materials (chipboards). The exposure of the samples to firebrands stream was provided using a firebrand generator of own original design. It was experimentally confirmed that particle size plays a significant role in the ignition of a building structure. If the characteristic particle size, which can be defined as the ratio of its volume to the surface area in contact with the wood, is less than a certain characteristic value, then the ignition mode with a sharp temperature maximum near the phase interface is not fulfilled. This can be explained by the prevailing heat removal into the external environment in comparison with the amount of heat coming from a heat gun and resulting from chemical reactions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3