An accelerated hybrid Riemannian conjugate gradient method for unconstrained optimization

Author:

Zhang Jinchao,Zhu Wei,Wang Wei,Wu Zhaochong,Zhang Xiaojun

Abstract

Abstract With the goal to deal with a series of optimization problems on general matrix manifolds with differentiable objective functions, we propose an accelerated hybrid Riemannian conjugate gradient technique. Specifically, the acceleration scheme of the proposed method using a modified stepsize which is multiplicatively determined by the Wolfe line search. The search direction of the proposed algorithm is determined by the hybrid conjugate parameter with computationally promising. We showed that the suggested approach converges globally to a stationary point. Our approach performs better than the state of art Riemannian conjugate gradient algorithms, as illustrated by computations on problems such as the orthogonal Procrustes problem and the Brockett-cost-function minimization problem.

Publisher

IOP Publishing

Reference15 articles.

1. Low-rank matrix completion by Riemannian optimization;Vandereycken;SIAM J. Optim.,2013

2. A brief introduction to manifold optimization;Hu;J. Oper. Res. Soc. China,2020

3. Low-rank matrix approximation using the Lanczos bidiagonalization process with applications;Simon;SIAM J. Sci. Comput.,2000

4. Joint diagonalization on the oblique manifold for independent component analysis;Absil,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3