Research on the Overall Influence of Magnus Cylinders on Airfoil Structures and Structural Optimization

Author:

Su Zhengyu,Yang Baosheng,Li Yongyuan,Jiang Yi,Ren Fantao

Abstract

Abstract With the coupling effect of Magnus cylinder and symmetric airfoil as the research object, the numerical analysis method is used to study the influence of Magnus cylinder layout position and protruding height ratio on the aerodynamic characteristics of the airfoil. Based on the aerodynamic law of Magnus airfoil and Optistruct deformer optimisation method, the optimisation model of Magnus airfoil structure is proposed. Results reveal that the placement of the Magnus cylinder near the leading edge of the upper surface and the trailing edge of the lower surface significantly impacts the aerodynamic characteristics of the Magnus airfoil. Moreover, as the protruding height ratio increases, the aerodynamic performance of the airfoil experiences an initial enhancement followed by a reduction. Under the conditions of an 8° angle of attack and a Reynolds number of 9.5×105, the optimized aerodynamic performance of the Magnus airfoil demonstrates a remarkable increase of 17.5% compared to the baseline airfoil, accompanied by a significant reduction of 28.1% in stress concentration.

Publisher

IOP Publishing

Reference11 articles.

1. A review of the Magnus effect in aeronautics;Seifert;Progress in aerospace sciences,2012

2. On the Research Status of Magnus Effect;Wang;Technology Innovation and Application,2020

3. Study and Design of Magnus Effect Based Blade in Planetary Boundary Layer;Liu;Machine Tool & Hydraulics,2018

4. Numerical investigation of high-lift fixed wing with Magnus cylinders;Wang;Flight Dynamics,2021

5. Numerical analysis and optimization of aerodynamic performance of Magnus airfoil at low Reynold number;Tang;Acta Energiae Solaris Sinica,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3